Structure Reports

Online
ISSN 1600-5368

Rolf Hörger, Michael Marsch, Armin Geyer and Klaus Harms*

Fachbereich Chemie, Universität Marburg, Hans Meerwein-Strasse, 35032 Marburg, Germany

Correspondence e-mail:
harms@chemie.uni-marburg.de

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.052$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(1aS,1bS,4aR,4bR,7aS,10R)-Methyl 1a,1b,4a,4b,-7a,8,10,11-octahydro-8-oxo-bis(2-methyl-1,3-oxazino)[6,5,4-cd][4,5,6-de]thiazolo[3,2-a]-azepine-10-carboxylate

The absolute configuration of the title tetracyclic bis-oxazine, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, has been determined. It is an unexpected product from the attempt to synthesize a new class of bisoxazolines. The seven-membered lactam ring exhibits four axial (O and N) and one equatorial (S) substituents. The ortho-condensed and cis-configurated oxazine rings are positioned on opposite sides of the lactam ring.

Comment

In recent years, bis-oxazoline-ligand-metal complexes have received attention through their use in various catalytic processes (Ghosh et al., 1998). Therefore, the synthesis of new classes of bis-oxazolines poses a challenge to create new chiral auxilliaries (Gant \& Meyers, 1994). An attempt to synthesize the bis-oxazoline based on the thiazolo[3,2-a]azepine scaffold failed. Instead of the desired bis-oxazoline, we obtained an analogous tetracyclic bis-oxazine (I). The entangled seven-membered-ring system is stable under aqueous conditions at room temperature.

(I)

The title compound, (I), was prepared from the starting material $(3 R, 6 S, 7 S, 8 S, 9 S, 9 \mathrm{aS})$-methyl perhydro-6,7,8,9-tetra-hydroxy-5-oxothiazolo[3,2-a]azepine-3-carboxylate, which is obtained by condensation of D-mannurono-3,6-lactone with the methyl ester of l-cysteine (Tremmel \& Geyer, 2002). Regioselective activation and subsequent substitution with NaN_{3} yielded the 7,8-bisazide. The acetylation of the remaining hydroxyl groups was performed with acetic anhydride in dry pyridine (Hörger et al., 2005). The azide was reduced with H_{2} and Pd / C, followed by an O, N-acyl shift. Finally the bisamide was treated with Appel reagents to form the tetracyclic bisoxazine (I) (Vorbrüggen \& Krolikiewicz, 1993). The bond lengths and angles (Table 1) are within normal ranges.

Experimental

Compound (I) was prepared from ($3 R, 6 S, 7 R, 8 R, 9 S, 9 \mathrm{aS})$-methyl-7,8-diacetamidoperhydro-6,9-dihydroxy-5-oxothiazolo[3,2-a]azepine-3carboxylate ($70 \mathrm{mg}, 0.186 \mathrm{mmol}$) by treatment with triphenyl-

Figure 1
The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probalitity level.
phosphine ($293 \mathrm{mg}, \quad 1.119 \mathrm{mmol}$), tetrachloromethane $(0.54 \mathrm{ml}$, $5.580 \mathrm{mmol})$ and triethylamine $(0.54 \mathrm{ml})$ in dry dichloromethane for 20 h at 273 K . After removal of the solvent, the crude product was purified by flash chromatography (dichloromethane-methanol, 10:1 v / v). Colorless crystals were obtained by recrystallization from ethyl acetate (yield: $41 \mathrm{mg}, 0.121 \mathrm{mmol} ; 65 \%$). ${ }^{1} \mathrm{H}$ NMR: $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; \delta 5.29\left(d,{ }^{3} J_{10-\mathrm{H}, 11^{\prime}-\mathrm{H}}=6.29 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 5.14(s, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H})$, $5.12\left(d d,{ }^{3} J_{7 \mathrm{a}-\mathrm{H}, 4 \mathrm{aH}}=7.69 \mathrm{~Hz},{ }^{4} J=2.28 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}\right), 4.55\left(d d,{ }^{3} J_{1 \mathrm{~b}}\right.$ $\left.{ }_{\mathrm{H}, 4 \mathrm{~b}-\mathrm{H}}=5.87 \mathrm{~Hz},{ }^{4} J=2.36 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}\right), 3.97\left(d t,{ }^{3} J_{44 ; \mathrm{b}-\mathrm{H}, 4 \mathrm{a}-\mathrm{H} / \mathrm{a}-\mathrm{H}}=\right.$ $\left.5.58 \mathrm{~Hz},{ }^{4} J=2.40 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}\right), 3.89\left(d d d,{ }^{3} J_{4 \mathrm{a}-\mathrm{H}, 7 \mathrm{a}-\mathrm{H}}=7.69 \mathrm{~Hz},{ }^{3} J_{4 \mathrm{a}-}\right.$ н, $\left.4 \mathrm{~b}-\mathrm{H}=5.17 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.61 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}\right), 3.76\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35$ $\left(d d,{ }^{2} J_{11^{\prime}-\mathrm{H}, 11-\mathrm{H}}=11.41 \mathrm{~Hz},{ }^{3} J_{11^{-}-\mathrm{H}, 10-\mathrm{H}}=6.27 \mathrm{~Hz}, 1 \mathrm{H}, 11^{〔}-\mathrm{H}\right), 3.15(d$, $\left.{ }^{2} J_{11-\mathrm{H}, 11 \cdot \mathrm{H}}=11.41 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 169.33\left(\mathbf{C O C H}_{3}\right), 165.78$ (8), 159.48 $\left(\mathrm{O}-\mathbf{C C H}_{3}-\mathrm{N}\right), 159.46\left(\mathrm{O}-\mathbf{C C H}_{3}-\mathrm{N}\right), 79.13(7 \mathrm{a}-\mathrm{C}), 75.98(1 \mathrm{~b}-\mathrm{C})$, $65.89(10-\mathrm{C}), 59.35(1 \mathrm{a}-\mathrm{C}), 53.13\left(\mathrm{OCH}_{3}\right), 47.02(4 \mathrm{~b}-\mathrm{C}), 43.49(4 \mathrm{a}-\mathrm{C})$, 31.15 (11-C), $21.68\left(\mathrm{O}-\mathrm{CCH}_{3}-\mathrm{N}\right), 21.36\left(\mathrm{O}-\mathrm{CCH}_{3}-\mathrm{N}\right)$.

Crystal data

```
C}\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{17}{}\mp@subsup{\textrm{N}}{3}{}\mp@subsup{\textrm{O}}{5}{}\textrm{S
M
Orthorhombic, P2 }\mp@subsup{\}{1}{2}\mp@subsup{2}{1}{
a=6.3486 (5) A
b=8.9324 (5) \AA
c=26.1484 (19) \AA
V=1482.83(18) \AA \AA
Z=4
Dx}=1.52\mp@subsup{\textrm{Mg m}}{}{-3
```


Data collection

Stoe IPDS-2 diffractometer

ω scans

Absorption correction: none
14439 measured reflections 2965 independent reflections 2697 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation
Cell parameters from 13957 reflections
$\theta=1.5-26^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Prism, colorless
$0.39 \times 0.18 \times 0.12 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.029 \\
& \theta_{\max }=26.2^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-10 \rightarrow 11 \\
& l=-32 \rightarrow 32
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$
$S=1.03$
2965 reflections
277 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0325 P)^{2}\right.$ $+0.0185 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}_{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0075 (11)
Absolute structure: Flack (1983), 1219 Friedel Pairs
Flack parameter: 0.03 (6)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1 $A-\mathrm{N} 9$	$1.4825(17)$	$\mathrm{C} 4 A-\mathrm{C} 7 A$	$1.5318(19)$
$\mathrm{C} 1 A-\mathrm{C} 1 B$	$1.5357(19)$	$\mathrm{C} 4 B-\mathrm{N} 5$	$1.4563(18)$
$\mathrm{C} 1 A-\mathrm{S} 1$	$1.8211(14)$	$\mathrm{C} 6-\mathrm{N} 5$	$1.2686(18)$
$\mathrm{C} 1 B-\mathrm{O} 2$	$1.4443(16)$	$\mathrm{C} 6-\mathrm{O} 7$	$1.3665(17)$
$\mathrm{C} 1 B-\mathrm{C} 4 B$	$1.528(2)$	$\mathrm{C} 7 A-\mathrm{O} 7$	$1.4480(17)$
$\mathrm{C} 3-\mathrm{N} 4$	$1.2672(18)$	$\mathrm{C} 7 A-\mathrm{C} 8$	$1.5256(19)$
$\mathrm{C} 3-\mathrm{O} 2$	$1.3759(17)$	$\mathrm{C} 8-\mathrm{N} 9$	$1.3560(18)$
$\mathrm{C} 4 A-\mathrm{N} 4$	$1.4575(18)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.521(2)$
$\mathrm{C} 4 A-\mathrm{C} 4 B$	$1.516(2)$	$\mathrm{C} 11-\mathrm{S} 1$	$1.8050(16)$
$\mathrm{N} 9-\mathrm{C} 1 A-\mathrm{C} 1 B$	$113.90(11)$	$\mathrm{C} 4 B-\mathrm{C} 4 A-\mathrm{C} 7 A$	$110.47(11)$
$\mathrm{N} 9-\mathrm{C} 1 A-\mathrm{S} 1$	$104.22(9)$	$\mathrm{N} 5-\mathrm{C} 4 B-\mathrm{C} 4 A$	$113.36(11)$
$\mathrm{C} 1 B-\mathrm{C} 1 A-\mathrm{S} 1$	$112.26(9)$	$\mathrm{N} 5-\mathrm{C} 4 B-\mathrm{C} 1 B$	$112.00(12)$
$\mathrm{O} 2-\mathrm{C} 1 B-\mathrm{C} 4 B$	$108.50(11)$	$\mathrm{C} 4 A-\mathrm{C} 4 B-\mathrm{C} 1 B$	$109.13(12)$
$\mathrm{O} 2-\mathrm{C} 1 B-\mathrm{C} 1 A$	$109.64(11)$	$\mathrm{N} 5-\mathrm{C} 6-\mathrm{O} 7$	$127.00(12)$
$\mathrm{C} 4 B-\mathrm{C} 1 B-\mathrm{C} 1 A$	$116.38(11)$	$\mathrm{O} 7-\mathrm{C} 7 A-\mathrm{C} 8$	$109.99(11)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{O} 2$	$128.07(13)$	$\mathrm{O} 7-\mathrm{C} 7 A-\mathrm{C} 4 A$	$113.07(11)$
$\mathrm{N} 4-\mathrm{C} 4 A-\mathrm{C} 4 B$	$112.75(12)$	$\mathrm{C} 8-\mathrm{C} 7 A-\mathrm{C} 4 A$	$112.09(11)$
$\mathrm{N} 4-\mathrm{C} 4 A-\mathrm{C} 7 A$	$110.08(11)$	$\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 7 A$	$118.72(12)$
$\mathrm{N} 9-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{O} 2$	$-48.87(16)$	$\mathrm{C} 7 A-\mathrm{C} 4 A-\mathrm{C} 4 B-\mathrm{C} 1 B$	$75.09(14)$
$\mathrm{S} 1-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{O} 2$	$69.28(12)$	$\mathrm{O} 2-\mathrm{C} 1 B-\mathrm{C} 4 B-\mathrm{N} 5$	$-176.49(10)$
$\mathrm{N} 9-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 4 B$	$74.71(15)$	$\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 4 B-\mathrm{N} 5$	$59.34(16)$
$\mathrm{S} 1-\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 4 B$	$-167.14(10)$	$\mathrm{O} 2-\mathrm{C} 1 B-\mathrm{C} 4 B-\mathrm{C} 4 A$	$57.16(14)$
$\mathrm{N} 4-\mathrm{C} 4 A-\mathrm{C} 4 B-\mathrm{N} 5$	$-174.12(11)$	$\mathrm{C} 1 A-\mathrm{C} 1 B-\mathrm{C} 4 B-\mathrm{C} 4 A$	$-67.01(15)$
$\mathrm{C} 7 A-\mathrm{C} 4 A-\mathrm{C} 4 B-\mathrm{N} 5$	$-50.49(16)$	$\mathrm{N} 4-\mathrm{C} 4 A-\mathrm{C} 7 A-\mathrm{O} 7$	$159.77(11)$
$\mathrm{N} 4-\mathrm{C} 4 A-\mathrm{C} 4 B-\mathrm{C} 1 B$	$-48.54(15)$	$\mathrm{C} 4 B-\mathrm{C} 4 A-\mathrm{C} 7 A-\mathrm{O} 7$	$34.60(15)$

The $U_{\text {eq }}$ value for H1a is low, probably due to H1a being involved in two short contacts. All H atoms were located in a difference map and refined isotropically $[\mathrm{C}-\mathrm{H}=0.89(2)-1.03(2) \AA]$.

Data collection: X-AREA (Stoe \& Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (2004). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gant, T. G. \& Meyers, A. I. (1994). Tetrahedron, 50, 2297-2360.
Ghosh, A. K., Mathivanan, P. \& Cappiello, J. (1998). Tetrahedron Asymmetry, 9, 1-45.
Hörger, R., Marsch, M., Geyer, A. \& Harms, K. (2005). Acta Cryst. E61, o2191-o2192.
Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.
Stoe \& Cie. (2005). X-AREA. Version 1.30. Stoe \& Cie, Darmstadt, Germany.
Tremmel, P. \& Geyer, A. J. (2002). J. Am. Chem. Soc. 124, 8548-8549.
Vorbrüggen, H. \& Krolikiewicz, K. (1993). Tetrahedron, 49, 9353-9372.

[^0]: © 2006 International Union of Crystallography All rights reserved

