organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rolf Hörger, Michael Marsch, Armin Geyer and Klaus Harms*

Fachbereich Chemie, Universität Marburg, Hans Meerwein-Strasse, 35032 Marburg, Germany

Correspondence e-mail: harms@chemie.uni-marburg.de

Key indicators

Single-crystal X-ray study T = 193 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.022 wR factor = 0.052 Data-to-parameter ratio = 10.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1aS,1bS,4aR,4bR,7aS,10R)-Methyl 1a,1b,4a,4b,-7a,8,10,11-octahydro-8-oxo-bis(2-methyl-1,3oxazino)[6,5,4-cd][4,5,6-de]thiazolo[3,2-a]azepine-10-carboxylate

The absolute configuration of the title tetracyclic bis-oxazine, $C_{14}H_{17}N_3O_5S$, has been determined. It is an unexpected product from the attempt to synthesize a new class of bis-oxazolines. The seven-membered lactam ring exhibits four axial (O and N) and one equatorial (S) substituents. The *ortho*-condensed and *cis*-configurated oxazine rings are positioned on opposite sides of the lactam ring.

Comment

In recent years, bis-oxazoline–ligand–metal complexes have received attention through their use in various catalytic processes (Ghosh *et al.*, 1998). Therefore, the synthesis of new classes of bis-oxazolines poses a challenge to create new chiral auxilliaries (Gant & Meyers, 1994). An attempt to synthesize the bis-oxazoline based on the thiazolo[3,2-*a*]azepine scaffold failed. Instead of the desired bis-oxazoline, we obtained an analogous tetracyclic bis-oxazine (I). The entangled seven-membered-ring system is stable under aqueous conditions at room temperature.

The title compound, (I), was prepared from the starting material (3R,6S,7S,8S,9S,9aS)-methyl perhydro-6,7,8,9-tetrahydroxy-5-oxothiazolo[3,2-*a*]azepine-3-carboxylate, which is obtained by condensation of D-mannurono-3,6-lactone with the methyl ester of L-cysteine (Tremmel & Geyer, 2002). Regioselective activation and subsequent substitution with NaN₃ yielded the 7,8-bisazide. The acetylation of the remaining hydroxyl groups was performed with acetic anhydride in dry pyridine (Hörger *et al.*, 2005). The azide was reduced with H₂ and Pd/C, followed by an *O,N*-acyl shift. Finally the bisamide was treated with Appel reagents to form the tetracyclic bisoxazine (I) (Vorbrüggen & Krolikiewicz, 1993). The bond lengths and angles (Table 1) are within normal ranges.

Experimental

© 2006 International Union of Crystallography All rights reserved

Compound (I) was prepared from (3*R*,6*S*,7*R*,8*R*,9*S*,9a*S*)-methyl-7,8-diacetamidoperhydro-6,9-dihydroxy-5-oxothiazolo[3,2-*a*]azepine-3-carboxylate (70 mg, 0.186 mmol) by treatment with triphenyl-

Received 5 December 2005

Accepted 20 January 2006

Figure 1

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probalitity level.

phosphine (293 mg, 1.119 mmol), tetrachloromethane (0.54 ml, 5.580 mmol) and triethylamine (0.54 ml) in dry dichloromethane for 20 h at 273 K. After removal of the solvent, the crude product was purified by flash chromatography (dichloromethane-methanol, 10:1 v/v). Colorless crystals were obtained by recrystallization from ethyl acetate (yield: 41 mg, 0.121 mmol; 65%). ¹H NMR: (500 MHz, CDCl₃); δ 5.29 (*d*, ³*J*_{10-H,11'-H} = 6.29 Hz, 1H, 3-H), 5.14 (*s*, 1H, 1a-H), 5.12 (*dd*, ${}^{3}J_{7a-H.4aH} = 7.69$ Hz, ${}^{4}J = 2.28$ Hz, 1 H, 7a-H), 4.55 (*dd*, ${}^{3}J_{1b-}$ $_{\text{H.4b-H}}$ = 5.87 Hz, ^{4}J = 2.36 Hz, 1H, 1b-H), 3.97 (*dt*, $^{3}J_{44;\text{b-H},4a-\text{H/1a-H}}$ = 5.58 Hz, ${}^{4}J = 2.40$ Hz, 1H, 4b-H), 3.89 (*ddd*, ${}^{3}J_{4a-H,7a-H} = 7.69$ Hz, ${}^{3}J_{4$ _{H.4b-H} = 5.17 Hz, ⁴J = 2.61 Hz, 1H, 4a-H), 3.76 (s, 3 H, OCH₃), 3.35 $(dd, {}^{2}J_{11^{-}H,11^{-}H} = 11.41 \text{ Hz}, {}^{3}J_{11^{-}H,10^{-}H} = 6.27 \text{ Hz}, 1H, 11^{+}H), 3.15 (d, 3.15)$ ${}^{2}J_{11-H,11-H} = 11.41$ Hz, 1H, 2-H), 2.11 (s, 3H, CH₃), 1.99 (s, 3H, CH₃). ¹³C NMR: (125 MHz, CDCl₃); δ169.33 (COCH₃), 165.78 (8), 159.48 (O-CCH₃-N), 159.46 (O-CCH₃-N), 79.13 (7a-C), 75.98 (1 b-C), 65.89 (10-C), 59.35 (1a-C), 53.13 (OCH₃), 47.02 (4b-C), 43.49 (4a-C), 31.15 (11-C), 21.68 (O-CCH₃-N), 21.36 (O-CCH₃-N).

Crystal data

$C_{14}H_{17}N_3O_5S$	Mo $K\alpha$ radiation
$M_r = 339.37$	Cell parameters from 13957
Orthorhombic, $P2_12_12_1$	reflections
a = 6.3486 (5) Å	$\theta = 1.5 - 26^{\circ}$
b = 8.9324 (5) Å	$\mu = 0.25 \text{ mm}^{-1}$
c = 26.1484 (19) Å	T = 193 (2) K
$V = 1482.83 (18) \text{ Å}^3$	Prism, colorless
Z = 4	$0.39 \times 0.18 \times 0.12 \text{ mm}$
$D_x = 1.52 \text{ Mg m}^{-3}$	
Data collection	
	D
Stoe IPDS-2 diffractometer	$R_{\rm ext} = 0.029$

 $\theta_{\rm max} = 26.2^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -10 \rightarrow 11$

 $l = -32 \rightarrow 32$

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: none
14439 measured reflections
2965 independent reflections
2697 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F ²
$R[F^2 > 2\sigma(F^2)] = 0.022$
$wR(F^2) = 0.052$
S = 1.03
2965 reflections
277 parameters
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0325P)^2]$
+ 0.0185P]
where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0075 (11) Absolute structure: Flack (1983), 1219 Friedel Pairs Flack parameter: 0.03 (6)

Table 1

Selected geometric parameters (Å, °).

C1A-N9	1.4825 (17)	C4A-C7A	1.5318 (19)
C1A - C1B	1.5357 (19)	C4B-N5	1.4563 (18)
C1A-S1	1.8211 (14)	C6-N5	1.2686 (18)
C1B-O2	1.4443 (16)	C6-O7	1.3665 (17)
C1B-C4B	1.528 (2)	C7A-O7	1.4480 (17)
C3-N4	1.2672 (18)	C7A-C8	1.5256 (19)
C3-O2	1.3759 (17)	C8-N9	1.3560 (18)
C4A - N4	1.4575 (18)	C10-C11	1.521 (2)
C4A - C4B	1.516 (2)	C11-S1	1.8050 (16)
N9-C1A-C1B	113 90 (11)	C4B-C4A-C7A	110 47 (11)
N9-C1A-S1	104 22 (9)	N5-C4B-C4A	113 36 (11)
C1B-C1A-S1	112.26 (9)	N5-C4B-C1B	112.00 (12)
O2-C1B-C4B	108.50 (11)	C4A - C4B - C1B	109.13 (12)
O2-C1B-C1A	109.64 (11)	N5-C6-O7	127.00 (12)
C4B-C1B-C1A	116.38 (11)	O7-C7A-C8	109.99 (11)
N4-C3-O2	128.07 (13)	O7-C7A-C4A	113.07 (11)
N4-C4A-C4B	112.75 (12)	C8-C7A-C4A	112.09 (11)
N4-C4A-C7A	110.08 (11)	N9-C8-C7A	118.72 (12)
N9-C1 A -C1 B -O2	-48.87 (16)	C7A-C4A-C4B-C1B	75.09 (14
S1-C1A-C1B-O2	69.28 (12)	O2-C1B-C4B-N5	-176.49 (10
N9-C1A-C1B-C4B	74.71 (15)	C1A - C1B - C4B - N5	59.34 (16
S1-C1A-C1B-C4B	-167.14 (10)	O2-C1 <i>B</i> -C4 <i>B</i> -C4 <i>A</i>	57.16 (14
N4-C4A-C4B-N5	-174.12 (11)	C1A - C1B - C4B - C4A	-67.01 (15
C7A - C4A - C4B - N5	-50.49 (16)	N4-C4A-C7A-O7	159.77 (11
N4-C4A-C4B-C1B	-48.54 (15)	C4B-C4A-C7A-O7	34.60 (15
	. /		· · · · ·

The U_{eq} value for H1a is low, probably due to H1a being involved in two short contacts. All H atoms were located in a difference map and refined isotropically [C-H = 0.89 (2)-1.03 (2) Å].

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare *et al.*, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Brandenburg, K. (2004). *DIAMOND*. Version 3.1. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gant, T. G. & Meyers, A. I. (1994). Tetrahedron, 50, 2297-2360.
- Ghosh, A. K., Mathivanan, P. & Cappiello, J. (1998). *Tetrahedron Asymmetry*, 9, 1–45.
- Hörger, R., Marsch, M., Geyer, A. & Harms, K. (2005). Acta Cryst. E61, o2191-o2192.

Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.

Stoe & Cie. (2005). X-AREA. Version 1.30. Stoe & Cie, Darmstadt, Germany.

Tremmel, P. & Geyer, A. J. (2002). J. Am. Chem. Soc. 124, 8548–8549.Vorbrüggen, H. & Krolikiewicz, K. (1993). Tetrahedron, 49, 9353–9372.